
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: LOWER BOUND THEORY

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:
• Articulate the distinction between algorithm complexity and problem complexity

• Describe the notion of lower bounds of computational problems, and explain their
significance

• Do the same for upper bounds

• Explicate the notation of big-O, big-Ω, and big-Θ in the context of complexity of
computational problems

• Compute the lower bounds of several important problems

• Apply certain techniques to derive lower bounds for new problems

• Derive the achievable lower bound of sorting

• Model comparison-based algorithms, and appreciate the need for models in proving lower
bounds

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

2

OUTLINE

• Complexity of algorithms vs. complexity of problems

• Definition and significance of lower bounds of computational
problems – the big-Ω notation

• Derivation of lower bounds for a number of problems

• Definition of upper bounds and their significance

• Big-Θ, achievable lower bounds, and speed-optimal
algorithms

• Derivation of the famous achievable lower bound of sorting

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

3

PERSPECTIVE
--SWITCHING ATTENTION FROM ALGORITHMS TO PROBLEMS--

• Up to now, we focused on complexity of algorithms

• Today, we switch our attention to complexity of problems

• Specifically, we will address the minimum amount of
time/computation needed to solve a problem no matter
which algorithm or technique we use

• Alternatively, we look for intrinsic limits of time on
solving problems computationally, limits that no
algorithms for a given problem can beat

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

4

PERSPECTIVE
-- LOWER BOUNDS --

• Informally, a function 𝑙𝑙(𝑛𝑛) is a lower bound for a problem P if every
existing/future algorithm for P takes at least 𝑐𝑐. 𝑙𝑙(𝑛𝑛) time for some constant 𝑐𝑐

• Formally, 𝑙𝑙(𝑛𝑛) is called a lower bound for a problem P if every algorithm for
P takes time 𝑻𝑻 𝒏𝒏 = 𝜴𝜴(𝒍𝒍 𝒏𝒏)

• Recall the Ω notation: 𝑇𝑇 𝑛𝑛 = Ω(𝑙𝑙 𝑛𝑛) if

∃𝑐𝑐,𝑛𝑛0 such that 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐. 𝑙𝑙 𝑛𝑛 ∀𝑛𝑛 ≥ 𝑛𝑛0
• Notation: If 𝑙𝑙(𝑛𝑛) is a lower bound for problem P, denote that by:

P is 𝛀𝛀(𝒍𝒍 𝒏𝒏) or P = 𝛀𝛀(𝒍𝒍 𝒏𝒏) or 𝐜𝐜. 𝒍𝒍 𝒏𝒏 ≤ 𝑷𝑷

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

5

LOWER BOUNDS (LB)
-- MULTIPLICITY OF LBs, INSIGHT, ANALOGIES --

• If 𝑙𝑙1(𝑛𝑛) is a lower bound for P, and 𝑙𝑙2(𝑛𝑛) is function where 𝑙𝑙2 𝑛𝑛 ≤ 𝑐𝑐𝑐. 𝑙𝑙1(𝑛𝑛) for some constant
𝑐𝑐𝑐 and ∀𝑛𝑛 ≥ 𝑛𝑛1 for some 𝑛𝑛1, i.e., 𝑙𝑙1 𝑛𝑛 = Ω(𝑙𝑙2 𝑛𝑛), then clearly 𝑙𝑙2(𝑛𝑛) is another lower bound
for P (Why?)

• Analogy: If a reliable expert announces that every house in Washington costs at least
$300K (i.e., $300K is a lower bound on house prices), then clearly every house in
Washington costs at least $200K (i.e., $200K is another lower bound). In fact, every
quantity < $300K is a lower bound

• Which is the more interesting lower bound?
• The higher one (i.e., 𝑙𝑙1(𝑛𝑛))

• Analogy: When we know for sure that every house costs at least $300K, and then someone
says that every house costs at least $200K, we respond: “of course, because we already
know that it costs at least $300K!”

• So the smaller lower bounds are not interesting, they give us no new information.

• So the search is for higher and higher lower bounds, reaching for the intrinsic complexity
of the problem

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

6

LESSONS LEARNED SO FAR

• A lower bound (L.B.) for a computational problem P cannot be
beaten by any algorithm for P: an L.B. is a speed barrier

• For any P, the search is for higher and higher LB’s, reaching for
the intrinsic complexity of P

• No LB for P can be > than the complexity of an algorithm for P

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

7

EXAMPLES OF LOWER BOUNDS
-- THE MINIMUM PROBLEM --

• Problem P: finding the minimum in an arbitrary input array A[1:n]

• Find some lower bounds on P

• P is clearly Ω(1), because simply reporting the output takes O(1).

• In fact, the size of the output is always a lower bound because simply
reporting the output (never mind how long it takes to compute it) takes that
much time

• P is Ω(𝑛𝑛). Why?
• Every input element must be examined at least once to get the right answer.

Why?
• Because if an algorithm systematically ignores an input in some fixed position,

and the input is random (i.e., has no structure), then the algorithm will not always
be correct (e.g., when the minimum is actually in the ignored position)

CS 6212 Design and Analysis of Algorithms
Lower-Bound Theory 8

EXAMPLES OF LOWER BOUNDS
-- THE MINIMUM PROBLEM IN A HEAP --

• Problem P: finding the minimum in a min-heap H

• Find some lower bounds on P

• P is clearly Ω(1), for reasons stated earlier

• Is P Ω(𝑛𝑛)? Why or Why not?
• No, n is not a lower bound for this problem when the input is a min-heap

• Because, indeed, the minimum is at the root, and so we can find it in O(1)
time, without having to examine any other element in the heap

• So, is input size always a lower bound?
• No, not when the input has some structure relevant to the problem

• Yes, when the input is arbitrary/random in structure

CS 6212 Design and Analysis of Algorithms
Lower-Bound Theory 9

EXAMPLES OF LOWER BOUNDS
-- CONSTRUCTION OF A HEAP--

• Problem P: Constructing a min-heap H from an arbitrary input
array A[1:n]

• Find some lower bounds on P

• Is P 𝜴𝜴(𝒏𝒏)?
• Yes, because the output size is n

• Is there a bigger lower bound than n for this problem?
• No, because we know of an algorithm that constructs a heap in O(n)

• Since 𝑛𝑛 is a lower bound and there is an algorithm that does it in
O(𝑛𝑛), we say that the lower bound 𝑛𝑛 is achievable (more on that
later)

CS 6212 Design and Analysis of Algorithms
Lower-Bound Theory 10

EXAMPLES OF LOWER BOUNDS
-- CONSTRUCTION OF A BST-

• Problem P: Constructing a Binary Search tree from an
arbitrary input array A[1:n]

• Find some lower bounds on P

• Is P Ω(𝑛𝑛)?
• Yes, because the output size is n

• Is there a bigger lower bound than n for this problem?
• Possibly: we don’t know of any algorithms that constructs a BST in

O(n) time

• Is P 𝜴𝜴(𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)? (We’ll see later)
CS 6212 Design and Analysis of Algorithms
Lower-Bound Theory 11

EXAMPLES OF LOWER BOUNDS
-- SEARCHING: IN A RANDOM ARRAY --

• Problem P: Searching for a value 𝑎𝑎 in a random input array A[1:n]

• Is Searching 𝜴𝜴(𝒏𝒏)?
• Yes, because every input element has to be examined since the input has

no structure relevant to the problem

• Is there a bigger lower bound than n for this problem?
• No, because scanning algorithm (from start to end of the array) takes O(n)

time, and so no lower bound can be bigger than that

• So n is an achievable lower bound for the random search problem

CS 6212 Design and Analysis of Algorithms
Lower-Bound Theory 12

EXAMPLES OF LOWER BOUNDS
-- SEARCHING: IN A SORTED ARRAY --

• Problem P: Searching for a value 𝑎𝑎 in a sorted input array
A[1:n]

• Is Searching Ω(𝑛𝑛)?
• No, because the binary search algorithm (a well-known search

algorithm) takes O(log 𝑛𝑛), which is less than 𝑛𝑛

• Is Searching 𝜴𝜴(𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)?
• Possibly, since we don’t know of any search algorithm in a

sorted arrays that takes less than log𝑛𝑛
• But is it? Yes (the proof is an exercise)

CS 6212 Design and Analysis of Algorithms
Lower-Bound Theory 13

EXAMPLES OF LOWER BOUNDS
-- MERGING TWO SORTED ARRAYS --

• Problem P: Merging two sorted arrays 𝐴𝐴[1:𝑛𝑛] and 𝐵𝐵[1:𝑚𝑚]
• Is there a bigger lower bound than (𝑛𝑛 +𝑚𝑚)?

• No, because we have a merging algorithm (which we
developed early in the semester) which takes O(𝑛𝑛 + 𝑚𝑚), and so
no lower bound can be bigger than that

• Is Merging 𝜴𝜴(𝒏𝒏+ 𝒎𝒎)?
• Possibly: We don’t know of any merging algorithm that merges in

less time

• But is it? Yes (the proof is left as an exercise)

CS 6212 Design and Analysis of Algorithms
Lower-Bound Theory 14

LESSONS LEARNED SO FAR

• A lower bound (L.B.) for a computational problem P cannot be
beaten by any algorithm for P: an L.B. is a speed barrier

• For any P, the search is for higher and higher LB’s, reaching for
the intrinsic complexity of P

• No LB for P can be > than the complexity of an algorithm for P

• The size of the output is always a lower bound

• The size of the input may be a lower bound: if the input has no
structure relevant to the problem

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

15

UPPER BOUNDS

• A function 𝑢𝑢(𝑛𝑛) is called an upper bound for (or on) a problem P if there is an algorithm for P that takes
O(𝑢𝑢(𝑛𝑛)) time. We denote that by:

P is O(𝒖𝒖(𝒏𝒏)) or P =O(𝒖𝒖(𝒏𝒏)) or P ≤ 𝒄𝒄.𝒖𝒖(𝒏𝒏)

• For example, 𝑂𝑂 𝑛𝑛2 is an upper bound on Sorting, because there is a sorting algorithm (e.g., insertion
sort) that takes 𝑂𝑂 𝑛𝑛2 time.

• Also, 𝑂𝑂 𝑛𝑛 log 𝑛𝑛 is another upper bound on Sorting because heapsort takes 𝑂𝑂 𝑛𝑛 log 𝑛𝑛 time

• Clearly, if 𝑢𝑢(𝑛𝑛) is an upper bound for P, then any function larger than 𝑢𝑢(𝑛𝑛) is also an upper bound for P

• Why call it an upper bound then?
• Because when we know that there is an O(𝑢𝑢(𝑛𝑛)) algorithm for P, then no one should bother to design a new

algorithm that takes more time than O(𝑢𝑢(𝑛𝑛)) since no one in their right mind should use the slower algorithm!

• So, we’re always aiming for smaller and smaller upper bounds (i.e., faster and faster algorithms) for a
given problem

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

16

“MOTION” OF UPPER BOUNDS

• We always aim for smaller and smaller upper bounds
(i.e., faster and faster algorithms) for a given problem

• Until when?

• Until we develop an algorithm that achieves a known lower
bound for the problem

• At that point, there is no room for faster algorithms by
definition of lower bounds.

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

17

UPPER AND LOWER BOUNDS
-- RELATION, SIGNIFICANCE, AND IMPLICATIONS --

• If 𝑙𝑙(𝑛𝑛) is a lower bound for P, and 𝑢𝑢(𝑛𝑛) is an upper bound on P, then

𝑐𝑐1. 𝑙𝑙 𝑛𝑛 ≤ P ≤ 𝑐𝑐2.𝑢𝑢(𝑛𝑛)
• That implies that 𝑙𝑙 𝑛𝑛 ≤ 𝑢𝑢(𝑛𝑛) up to a constant factor

• That also implies that
• There is an algorithm that takes O(𝑢𝑢(𝑛𝑛)), and any future algorithm we aim to

design for P should take less time than 𝑢𝑢(𝑛𝑛)
• Every algorithm for P will take at least 𝑙𝑙 𝑛𝑛 time
• We should look for higher lower bounds than 𝑙𝑙 𝑛𝑛 , if any

• The motion (or pressure) is always to push 𝑙𝑙 𝑛𝑛 up and 𝑢𝑢(𝑛𝑛) down

• What if they meet, i.e., 𝑙𝑙 𝑛𝑛 = 𝑢𝑢(𝑛𝑛) up to a constant factor?

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

18

THE THETA Θ NOTATION
• What if 𝑙𝑙 𝑛𝑛 = 𝑢𝑢(𝑛𝑛) up to a constant factor? Let 𝑓𝑓 𝑛𝑛 = 𝑙𝑙 𝑛𝑛 = 𝑢𝑢(𝑛𝑛)
• Definition: We say that a problem P is Θ(𝑓𝑓(𝑛𝑛)) if

P is Ω(𝑓𝑓(𝑛𝑛)) and P is O(𝑓𝑓(𝑛𝑛))
• That is, P is Θ(𝑓𝑓(𝑛𝑛)) if 𝑓𝑓(𝑛𝑛) is at once a lower bound and an upper bound for P

• As an upper bound, it means there is an algorithm 𝐴𝐴 for P that takes O(𝑓𝑓(𝑛𝑛))
time

• As a lower bound, it means that no algorithm can take less time than 𝑓𝑓(𝑛𝑛)
• Therefore, algorithm 𝐴𝐴 is the fastest possible for P, and we have it!

• So, we have a Theta situation whenever an algorithm for a problem P achieves a
known lower bound for P

• Implications: Algorithm 𝐴𝐴 is optimal (in speed), and there is no room for
improvement (in speed or in lower bounds), i.e., P is closed!

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

19

LESSONS LEARNED SO FAR
• A lower bound (L.B.) for a computational problem P cannot be beaten by any

algorithm for P: an L.B. is a speed barrier

• For any P, the search is for higher and higher LB’s, reaching for the intrinsic complexity
of P

• No LB for P can be > than the complexity of an algorithm for P

• The size of the output is always a lower bound

• The size of the input may be a lower bound: if the input has no structure relevant to the
problem

• The push is always towards higher LBs and smaller upper bounds (faster algorithms) –
until they meet

• When an algorithm for a problem P achieves a known LB for P, the algorithm is optimal
in speed, and there is no room for improvement (in speed or LB), i.e., P is closed!

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

20

LOWER BOUND ON SORTING (1)
-- A TIGHT BOUND AND WHAT TO SHOW--

• Theorem: Sorting is Θ(𝑛𝑛 log𝑛𝑛)

• Proof:

• Need to show that Sorting is O(𝑛𝑛 log𝑛𝑛) and Sorting is
Ω(𝑛𝑛 log𝑛𝑛)

• Well, we have O(𝑛𝑛 log𝑛𝑛) sorting algorithms (e.g., heapsort
and mergesort)

• So it remains to show that Sorting is Ω(𝑛𝑛 log𝑛𝑛)

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

21

LOWER BOUND ON SORTING (2)
-- WHAT WE NEED TO SHOW SPECIFICALLY --

• Theorem: Sorting is Θ(𝑛𝑛 log𝑛𝑛)

• Proof (Continued):

• Show that Sorting is Ω(𝑛𝑛 log𝑛𝑛)
• For that, we need to show that every sorting algorithm

takes at least Ω(𝑛𝑛 log𝑛𝑛) time

• We can limit ourselves to comparison-based sorting
algorithms

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

22

LOWER BOUND ON SORTING (3)
-- DILEMMA --

• Proof (Continued):

• Need to show that every comparison-based sorting
algorithm takes at least Ω(𝑛𝑛 log𝑛𝑛) time

• Dilemma: The above goal presents some serious
challenges

• Not all possible sorting algorithms have been designed yet

• There could potentially be an infinite list of sorting
algorithms: we can never finish proving that each one of
them takes at least Ω(𝑛𝑛 log𝑛𝑛) time

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

23

LOWER BOUND ON SORTING (4)
-- AN ANALOGY => INSPIRATION FOR A WAY OUT --

• A similar dilemma is when we’re asked to prove that “all
humans are mortal”

• Not all humans are here (yet) to check
• There is potentially an infinite list of humans to check, so we’ll

never finish examining their mortality one by one

• Is there a way out?
• Yes, Modeling: need a (biological) model that captures the

essential and common characteristics of the human body
• Then we can focus on that model and prove that “the model will

die one day”

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

24

LOWER BOUND ON SORTING (5)
-- MODELING, BUT WHAT MODEL? --

• Proof (Continued):

• Need to show that every comparison-based sorting
algorithm takes at least Ω(𝑛𝑛 log𝑛𝑛) time

• How: Need a model (of every comparison-based sorting
algorithm)

• Once we have such a model, we’ll prove that the model
algorithm takes at least Ω(𝑛𝑛 log𝑛𝑛) time

• So we have a methodological way out

• But what would that model be like?

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

25

LOWER BOUND ON SORTING (5)
-- MODEL OF SORTING ALGORITHMS --

• Proof (Continued):
• But what would that model be like?

• The model is a Comparison Tree

• It is a binary tree of comparison nodes

• Every node is a comparison between two

numbers in the input array

• Take one arbitrary sorting algorithm
1. The algorithm will pick one particular pair

of numbers to compare

2. Depending on the outcome of the comparison,

the algorithm will pick another specific pair of numbers to compare,

3. The last step is repeated until the algorithm

“gathers enough information” to know how to order the elements

• This will be illustrated on a specific sorting algorithm next

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

26

𝑎𝑎𝑖𝑖 ∶ 𝑎𝑎𝑗𝑗

𝑎𝑎𝑠𝑠: 𝑎𝑎𝑡𝑡

𝑎𝑎𝑘𝑘: 𝑎𝑎𝑘𝑘′𝑎𝑎𝑙𝑙 :𝑎𝑎𝑚𝑚

𝑎𝑎𝑝𝑝:𝑎𝑎𝑞𝑞
>

≤

≤

>

>≤

LOWER BOUND ON SORTING (6)
-- ILLUSTRATION OF COMPARISON TREES --

• We will show the comparison tree model of mergesort for sorting input of n=3 elements: 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3

• Partition input to 2 parts: [𝑎𝑎1,𝑎𝑎2] , [𝑎𝑎3]

• Partition [𝑎𝑎1,𝑎𝑎2] into 2 halves: [𝑎𝑎1], [𝑎𝑎2]

• Each of the two halves is sorted

• Now now merge [𝑎𝑎1] and [𝑎𝑎2]

• Compare 𝑎𝑎1 with 𝑎𝑎2
• If 𝑎𝑎1 ≤ 𝑎𝑎2:

• Mergesort moves 𝑎𝑎1 to output, then

append 𝑎𝑎2 to output, so [𝑎𝑎1 ≤ 𝑎𝑎2] is sorted

• [𝑎𝑎3], being a single-number part, is already sorted

• Now merge [𝑎𝑎1 ≤ 𝑎𝑎2] with [𝑎𝑎3]:

• Compare 𝑎𝑎1 with 𝑎𝑎3
• If 𝑎𝑎1 ≤ 𝑎𝑎3: move 𝑎𝑎1 to output, and then compare 𝑎𝑎2 with 𝑎𝑎3: depending on outcome, we get 𝑎𝑎1 ≤ a2 ≤ 𝑎𝑎3 or 𝑎𝑎1 ≤ a3 < 𝑎𝑎2
• If 𝑎𝑎1 > 𝑎𝑎3: move 𝑎𝑎3 to output, and then move [𝑎𝑎1 ≤ 𝑎𝑎2] to end of output, getting 𝑎𝑎3 < a1 ≤ 𝑎𝑎2

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

27

𝑎𝑎1:𝑎𝑎2
≤ >

𝑎𝑎1:𝑎𝑎3
≤ >

𝑎𝑎2:𝑎𝑎3≤ >
𝑎𝑎1 ≤ a2 ≤ 𝑎𝑎3 𝑎𝑎1 ≤ a3 < 𝑎𝑎2

𝑎𝑎3 < a1 ≤ 𝑎𝑎2

𝑎𝑎2:𝑎𝑎3
≤ >

𝑎𝑎1:𝑎𝑎3 𝑎𝑎3 < a2 < 𝑎𝑎1

≤ >

𝑎𝑎2 < a1 ≤ 𝑎𝑎3 𝑎𝑎2 ≤ a3 < 𝑎𝑎1

The right subtree (if
𝑎𝑎1 > 𝑎𝑎2) is generated
the same way

LOWER BOUND ON SORTING (7)
-- OBSERVATIONS ABOUT THE COMPARISON TREE --

• How many leaves?

• 6: Why? What is the significance of 6?

• It is 3!, the number of permutations of 𝑎𝑎1 , 𝑎𝑎2, 𝑎𝑎3. Why?
• Because the output can be any re-arrangement of input

• For input of length n, we have n! leaves
• The tree can be viewed as the

code of the whole sorting algorithm

• How about a run/execution for a given input?
• Try executing on the input 7, 2, 5, i.e., 𝑎𝑎1 = 7,𝑎𝑎2 = 2,𝑎𝑎3 = 5
• Start at root, compare 𝑎𝑎1:𝑎𝑎2, i.e., 7:2, we get 𝑎𝑎1 > 𝑎𝑎2, go right

• Now compare 𝑎𝑎2:𝑎𝑎3, i.e., 2:5, we get 𝑎𝑎2 ≤ 𝑎𝑎3, so go left

• Now compare 𝑎𝑎1 :𝑎𝑎3, i.e., 7:5, we get 𝑎𝑎1 > 𝑎𝑎3, so go right, getting to 𝑎𝑎2 ≤ a3 < 𝑎𝑎1
• That is, 2 ≤ 5 < 7 which is sorted

• So a run is like tracing a path from the root to a leaf (corresponding to the sorted order)

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

28

𝑎𝑎1:𝑎𝑎2
≤ >

𝑎𝑎1:𝑎𝑎3
≤ >

𝑎𝑎2:𝑎𝑎3≤ >
𝑎𝑎1 ≤ a2 ≤ 𝑎𝑎3 𝑎𝑎1 ≤ a3 < 𝑎𝑎2

𝑎𝑎3 < a1 ≤ 𝑎𝑎2

𝑎𝑎2:𝑎𝑎3
≤ >

𝑎𝑎1:𝑎𝑎3 𝑎𝑎3 < a2 < 𝑎𝑎1

≤ >

𝑎𝑎2 < a1 ≤ 𝑎𝑎3 𝑎𝑎2 ≤ a3 < 𝑎𝑎1

LOWER BOUND ON SORTING (8)
-- RECAP, AND REST OF THE PROOF--

1. Recap:
a. Every sorting algorithm is modeled by a comparison tree (C.T.)

b. The tree has n! leaves

c. The tree is like the code for the algorithm

d. An execution of the algorithm is like tracing a path from the root to a leaf

2. The (W.C) time of the algorithm is the length of the longest path from root to leaves

3. Therefore, the time of the algorithm is the height of the comparison tree: 𝑻𝑻 𝒏𝒏 = 𝒉𝒉

4. Lemma: In any binary tree of 𝑁𝑁 leaves and height h, we have 𝑁𝑁 ≤ 2ℎ, i.e., 𝒉𝒉 ≥ 𝒍𝒍𝒍𝒍𝒍𝒍𝑵𝑵.
• Proof: 𝑁𝑁 ≤ [# leaves in the completely filled binary tree (of height h)]=2ℎ ⇒ 𝑁𝑁 ≤ 2ℎ ⇒ log𝑁𝑁 ≤ ℎ.

5. (4) and (1.b) ⇒ the height ℎ of the C.T. ≥ log 𝑁𝑁 = log𝑛𝑛! ≥ 1
2𝑛𝑛 log𝑛𝑛, i.e., 𝒉𝒉 ≥ 𝟏𝟏

𝟐𝟐𝒏𝒏 𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏

6. (3) and (5) ⇒ time of the arbitrary sorting algorithm is 𝑻𝑻 𝒏𝒏 = 𝒉𝒉 ≥ 𝟏𝟏
𝟐𝟐𝒏𝒏 𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏 = 𝒄𝒄.𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏

7. Conclusion: 𝑻𝑻 𝒏𝒏 = 𝛀𝛀(𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏). Q.E.D.
CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

29

Using Stirling’s formula

LESSONS LEARNED SO FAR
• A lower bound (L.B.) for a computational problem P is a speed barrier

• For any P, the search is for higher and higher LB’s, up to the intrinsic complexity of P

• No LB for P can be greater than the complexity of an algorithm for P

• The size of the output is always a lower bound

• The size of the input may be a lower bound: if the input has no structure relevant to the problem

• The push is always to higher LBs and smaller upper bounds (faster algorithms) – until they meet

• When an algorithm for a problem P achieves a known LB for P, the algorithm is optimal in speed,
and there is no room for improvement (in speed or LB), i.e., P is closed!

• Sorting is Θ(n log n)

• Proofs for lower bounds can present serious challenges, which can me surmounted using
modeling of the algorithms for the problem at hand

• A good model for a class of algorithms can serve as a code for each of those algorithms and can
conveniently offer the execution time of the modeled algorithm

CS 6212 Design and Analysis of Algorithms Lower-Bound Theory

30

	CS 6212 Design and Analysis of Algorithms��Lecture: lower bound theory
	Objectives of this Lecture
	outline
	Perspective�--switching attention from algorithms to problems--
	Perspective�-- lower bounds --
	lower bounds (LB)�-- multiplicity of LBs, Insight, analogies --
	Lessons learned so far
	Examples of lower bounds�-- The minimum problem --
	Examples of lower bounds�-- The minimum problem in a heap --
	Examples of lower bounds�-- Construction of a Heap--
	Examples of lower bounds�-- Construction of a BST-
	Examples of lower bounds�-- Searching: in a random array --
	Examples of lower bounds�-- Searching: in a sorted array --
	Examples of lower bounds�-- merging two sorted arrays --
	Lessons learned so far
	upper bounds
	“motion” of upper bounds
	Upper and lower bounds�-- relation, significance, and implications --
	The theta Θ notation
	Lessons learned so far
	Lower bound on sorting (1)�-- a tight bound and what to show--
	Lower bound on sorting (2)�-- what we need to show specifically --
	Lower bound on sorting (3)�-- dilemma --
	Lower bound on sorting (4)�-- An analogy => inspiration for a way out --
	Lower bound on sorting (5)�-- modeling, but what model? --
	Lower bound on sorting (5)�-- Model of sorting algorithms --
	Lower bound on sorting (6)�-- illustration of comparison trees --
	Lower bound on sorting (7)�-- observations about the comparison tree --
	Lower bound on sorting (8)�-- recap, and rest of the proof--
	Lessons learned so far

